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New Rényi divergence families defined via convex optimization and their applications

Part 1

The iterated mean divergences and their application to device-independent
cryptography

Based on Brown, P., Fawzi, H. and Fawzi, O., Computing conditional entropies for quantum

correlations, Nat Commun 12, 575 (2021), arXiv:2007.12575.
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Motivation I

Bell-nonlocality

A B

X Y

A B

Nonlocal correlations are inherently random.

Foundation for randomness expansion / key-distribution protocols!

Security and analysis relies on being able to calculate the rates of such
protocols (bits per round).
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New Rényi divergence families defined via convex optimization and their applications
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A B

ρQAQBE

Secure Laboratories

Asymptotic rates are given by:

Randomness expansion

H(AB|X = x∗,Y = y∗,E)

QKD
H(A|X = x∗,E)− H(A|X = x∗,Y = y∗,B)

Want device-independent lower bounds
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Example

We want lower bounds on

inf H(A|X = x∗,E)

s.t.
∑
abxy

c iabxyp(ab|xy) = w i

where the infimum is over all finite dimensional states ρQAQBE , POVMs
{{Ma|x}a}x , {{Nb|y}b}y and joint Hilbert spaces QA ⊗ QB ⊗ E .

Difficult to solve
nonconvex / unbounded dimension

Known approaches

Analytical bounds [PAB+09] – tight bounds / restricted scope

Numerical bounds on Hmin – easy to compute / poor bounds

Recent work [TSG+19] – good bounds / computationally intensive

Our approach

Define new conditional entropies that are easy to bound device-independently and
lower bound H(A|E).
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The IM divergences

Entropies are special cases of divergences

H↑(A|B)ρ := sup
σB

−D(ρAB‖I ⊗ σB)

or
H↓(A|B)ρ := −D(ρAB‖I ⊗ ρB).

We define our conditional entropies via a divergence
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New Rényi divergence families defined via convex optimization and their applications

The IM divergences

Entropies are special cases of divergences

H↑(A|B)ρ := sup
σB

−D(ρAB‖I ⊗ σB)

or
H↓(A|B)ρ := −D(ρAB‖I ⊗ ρB).

We define our conditional entropies via a divergence

| arXiv:2007.12575 & arXiv:2007.12576 | Feb 01 2021 6 / 23



New Rényi divergence families defined via convex optimization and their applications

The IM divergences

Definition (Iterated mean divergences)

Let αk = 2k/(2k − 1) for k = 1, 2, . . . . Then the iterated mean divergences are
defined as

D(αk )(ρ‖σ) :=
1

αk − 1
logQ(αk )(ρ‖σ) , (1)

with

Q(αk )(ρ‖σ) := max
V1,...,Vk ,Z

αkTr

[
ρ

(V1 + V ∗1 )

2

]
− (αk − 1)Tr [σZ ]

s.t. V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V∗3 )

2

)
≥ 0 · · ·

(
I Vk

V ∗k Z

)
≥ 0,

(2)
where the optimization varies over V1, . . . ,Vk ,Z ∈ L (H).

Discrete family – (2, 4
3
, 8

7
, 16

15
, . . .

Defined via SDP

Linear in ρ and σ

Structure independent of the dimension!
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New Rényi divergence families defined via convex optimization and their applications

IM divergence properties
Satisfies data processing

D(αk )(E(ρ)‖E(σ)) ≤ D(αk )(ρ‖σ) ∀ channels E .

Lies between geometric and sandwiched

D̃αk (ρ‖σ) ≤ D(αk )(ρ‖σ) ≤ D̂αk (ρ‖σ)

Conditional entropies
will lower bound H

Decreasing in k
D(αk )(ρ‖σ) ≤ D(αk−1)(ρ‖σ)

and so for the corresponding conditional entropies

H(αk )(A|B) ≥ H(αk−1)(A|B)

Improving lower
bounds on H
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New Rényi divergence families defined via convex optimization and their applications

IM divergence properties
Satisfies data processing

D(αk )(E(ρ)‖E(σ)) ≤ D(αk )(ρ‖σ) ∀ channels E .

Lies between geometric and sandwiched

D̃αk (ρ‖σ) ≤ D(αk )(ρ‖σ) ≤ D̂αk (ρ‖σ)

Conditional entropies
will lower bound H

Decreasing in k
D(αk )(ρ‖σ) ≤ D(αk−1)(ρ‖σ)

and so for the corresponding conditional entropies

H(αk )(A|B) ≥ H(αk−1)(A|B)

Improving lower
bounds on H

| arXiv:2007.12575 & arXiv:2007.12576 | Feb 01 2021 8 / 23
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New Rényi divergence families defined via convex optimization and their applications

IM conditional entropies

Using the IM divergences we can construct a conditional entropy. Given a bipartitie state
ρAB we have

H↑(αk )(A|B)ρ =
αk

1− αk
logQ↑(αk )(ρ) (3)

where

Q↑(αk )(ρ) = max
V1,...,Vk

Tr

[
ρ

(V1 + V ∗1 )

2

]
s.t. TrA [V ∗k Vk ] ≤ IB

V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V∗3 )

2

)
≥ 0 · · ·(

I Vk−1

V ∗k−1
(Vk+V∗k )

2

)
≥ 0 .

(4)

Form still suitable for
DI optimization!
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IM conditional entropies II

For example

H↑(2)(A|B)ρ = −2 log max
V1

Tr

[
ρ

(V1 + V ∗1 )

2

]
s.t. TrA [V ∗1 V1] ≤ IB

V1 + V ∗1 ≥ 0

(5)

Compare with
Hmin(A|B)ρ = − log max Tr [ρM]

s.t. TrA [M] ≤ IB

M ≥ 0

(6)
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2

]
s.t. TrA [V ∗1 V1] ≤ IB

V1 + V ∗1 ≥ 0

(5)

Compare with
Hmin(A|B)ρ = − log max Tr [ρM]

s.t. TrA [M] ≤ IB

M ≥ 0

(6)

For DI applications we can rewrite this in terms of the initial entangled state |ψ〉〈ψ| and
the POVM operators used by Alice.

Can then be optimized in the Navascués Pironio Aćın hierarchy [NPA07].
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Application: DIRNG/DIQKD setup

A B

X Y

A BDIRNG – Lower bound

H(AB|X = x ,Y = y ,E)

.

DIQKD – Lower bound

H(A|X = x ,E)− H(A|B,X = x ,Y = y)
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Application: DIRNG/DIQKD setup

A B

X Y

A BDIRNG – Lower bound

H(AB|X = x ,Y = y ,E)

.

DIQKD – Lower bound

H(A|X = x ,E)− H(A|B,X = x ,Y = y)

Constrain devices by some full joint probability distribution pAB|XY .

Assume devices have detection inefficiencies. With probability η device measures
correctly and with probability 1− η device deterministically outputs 0.
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Application: DIRNG - full statistics / inefficient detectors
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H↑(4/3)(AB|E)

H↑(2)(AB|E)

Hmin(AB|E)

H(A|E) analytic

H(AB|E) TSGPL bound

H(A|E) bound from [PAB+09].
TSGPL bound from [TSG+19].
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Application: DIQKD - full statistics / inefficient detectors
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New Rényi divergence families defined via convex optimization and their applications

Part 2

Divergences defined via convex optimization with applications to quantum
Shannon theory

Based on Fawzi, H. and Fawzi, O., Defining quantum divergences via convex optimization,

Quantum, 2021, arXiv:2007.12576.
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New Rényi divergence families defined via convex optimization and their applications

Motivation

Divergences are useful quantities in both classical and quantum Shannon theory.

Can be used to define other important entropic quantities – entropies /
mutual information.

Find direct operational meanings in rates for hypothesis testing – measures of
distinguishability.

This work introduces another family of divergences D#
α which provide new

insights for the sandwiched divergences

D̃α(ρ‖σ) =
1

α− 1
logTr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
.
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New Rényi divergence families defined via convex optimization and their applications

Definition

Given two PSD matrices A� B and β ∈ [0, 1], let

A#βB := A1/2(A−1/2BA−1/2)βA1/2.

Definition

For α > 1 let

D#
α (ρ‖σ) :=

1

α− 1
logQ#

α (ρ‖σ)

where

Q#
α (ρ‖σ) := min

A≥0
Tr [A]

s.t. ρ ≤ σ#1/αA
SDP when α ∈ Q

Same as IM divergence when α = 2

| arXiv:2007.12575 & arXiv:2007.12576 | Feb 01 2021 16 / 23
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Channel divergence

We can also define a corresponding divergence for channels
N ,M : L(X ′)→ L(Y ) in the usual way

D#
α (N‖M) = sup

ρXX ′
D#
α ((I ⊗N )(ρXX ′)‖(I ⊗M)(ρXX ′)).

For D#
α this can be reformulated as a convex optimization problem

D#
α (N‖M) =

1

α− 1
logQ#

α (N‖M)

with

Q#
α (N‖M) = inf

AXY≥0
‖TrY [AXY ] ‖∞

s.t. JNXY ≤ JMXY #1/αAXY

Choi matrices
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New Rényi divergence families defined via convex optimization and their applications

Channel divergence

We can also define a corresponding divergence for channels
N ,M : L(X ′)→ L(Y ) in the usual way

D#
α (N‖M) = sup

ρXX ′
D#
α ((I ⊗N )(ρXX ′)‖(I ⊗M)(ρXX ′)).

For D#
α this can be reformulated as a convex optimization problem

D#
α (N‖M) =

1

α− 1
logQ#

α (N‖M)

with

Q#
α (N‖M) = inf

AXY≥0
‖TrY [AXY ] ‖∞

s.t. JNXY ≤ JMXY #1/αAXY

Choi matrices

| arXiv:2007.12575 & arXiv:2007.12576 | Feb 01 2021 17 / 23



New Rényi divergence families defined via convex optimization and their applications

Properties

Satisfies data processing

D#
α (E(ρ)‖E(σ)) ≤ D#

α (ρ‖σ) ∀ channels E .

Relation to other divergences

D̃α(ρ‖σ) ≤ D#
α (ρ‖σ) ≤ D̂α(ρ‖σ).

Regularizes to sandwiched divergence

lim
n→∞

1

n
D#
α (ρ⊗n‖σ⊗n) = D̃α(ρ‖σ).
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New Rényi divergence families defined via convex optimization and their applications

Application I: Computing limn→∞
1
nD̃α(M⊗n‖N⊗n)

We can use D#
α to compute

D̃reg
α (N‖M) := lim

n→∞
1
n D̃α(M⊗n‖N⊗n)

to arbitrary accuracy. Useful quantity in
channel discrimination

Theorem (Informal)

For all α > 1 and m ≥ 1

1

m
D#
α (N⊗m‖M⊗m)− g(m, α) ≤ D̃reg

α (N‖M)

and

D̃reg
α (N‖M) ≤ 1

m
D#
α (N⊗m‖M⊗m).

Can also be used to compute bounds on the relative entropy analogue!
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New Rényi divergence families defined via convex optimization and their applications

Application II: A new chain rule for D̃α

Theorem (Chain rule for D̃α)

Let α > 1, ρ, σ ≥ 0 and N ,M : L (X )→ L (Y ) be quantum channels. Then

D̃α(N (ρ)‖M(σ)) ≤ D̃reg
α (N‖M) + D̃α(ρ‖σ)

Generalization of the DPI

Same chain rule already known for the relative entropy [FFRS20]

Ex: useful for bounding repeated channel applications

D̃α(N t(ρ)‖Mt(σ)) ≤ tD̃reg
α (N‖M) + D̃α(ρ‖σ)

| arXiv:2007.12575 & arXiv:2007.12576 | Feb 01 2021 20 / 23
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New Rényi divergence families defined via convex optimization and their applications

Application III: Channel discrimination

Task: Given black box access to one of the channels N ,M : L (X ′)→ L (Y ),
determine if you received N .

Recent work [WBHK20] introduced the amortized divergence

Da(N‖M) := sup
ρXX ′ ,σXX ′∈D(XX ′)

[D(N (ρXX ′)‖M(σXX ′))− D(ρXX ′‖σXX ′)]

as a tool for computing rates of this task.

Using the chain rule one can prove

D̃a
α(N‖M) = D̃reg

α (N‖M).

We can compute this!

It can also be shown in certain new regimes that adaptive strategies do not
help!

Strong converse exponent
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New Rényi divergence families defined via convex optimization and their applications

Further work

Use to design better DI protocols / apply to different DI tasks. Can we
include preprocessing in DIQKD? [HST+20, WAP20]

Analyze finite round key rates (feasibility of DIQKD).

Can we make the computations more efficient? (Symmetries/dilations?)

What are the limiting cases as α→ 1

lim
α→1

D(α)(ρ‖σ) = ?

lim
α→1

D#
α (ρ‖σ) = ?

Other applications to D̃α?

Can we construct other families in a similar way?
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